Part Number Hot Search : 
TR3D225 IM01JR FAN8001 IDT74F 1206L MP406W BU2173F CZ5388B
Product Description
Full Text Search
 

To Download FAN752807 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 FAN7528 Dual-Output, Critical Conduction Mode PFC Controller
February 2007
FAN7528 Dual-Output, Critical Conduction Mode PFC Controller
Features
Low Total Harmonic Distortion (THD) Dual Output Voltage Control Precise Adjustable Output Over-Voltage Protection Open-Feedback Protection and Disable Function Zero Current Detector 160s Internal Start-up Timer MOSFET Over-Current Protection Under-Voltage Lockout with 3.5V Hysteresis Low Start-up (40A) and Operating Current (1.5mA) Totem-Pole Output with High State Clamp 400mA Peak Gate Drive Current 8-Pin DIP or 8-Pin SOP
Description
The FAN7528 is an active power factor correction (PFC) controller for boost PFC applications that operates in critical conduction mode (CRM). It uses voltage mode PWM that compares an internal ramp signal with the error amplifier output to generate MOSFET turn-off signal. Because the voltage mode CRM PFC controller does not need the rectified AC line voltage information, it can save the power loss of the input voltage sensing network necessary for the current mode CRM PFC controller. The FAN7528 provides the dual-output voltage control function without the AC line voltage sensing for adapter applications. It changes the PFC output voltage according to the AC line voltage. It provides protection functions such as over-voltage protection, open-feedback protection, over-current protection, and under-voltage lockout protection. The FAN7528 can be disabled if the INV pin voltage is lower than 0.45V and the operating current decreases to 65A. Using a new variable on-time control method, THD is lower than the conventional CRM boost PFC ICs.
Applications
Adapter
Related Application Notes
AN-6012: Design of Power Factor Correction Circuit Using FAN7528
Ordering Information
Part Number
FAN7528N FAN7528M FAN7528MX
Operating Temp. Range
-40C to +125C -40C to +125C -40C to +125C
Pb-Free
Yes Yes Yes
Package
8-DIP 8-SOP 8-SOP
Packing Method
Rail Rail Tape & Reel
Marking Code
FAN7528 FAN7528 FAN7528
(c) 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6
www.fairchildsemi.com
FAN7528 Dual-Output, Critical Conduction Mode PFC Controller
Typical Application Diagrams
L AC IN VAUX R2 NAUX RZCD ZCD CO VCC MOT FAN7528 CS INV D VO
COMP R1
GND
FAN7528 Rev. 1.01
Figure 1. Typical Boost PFC Application
Internal Block Diagram
V CC 8
UVLO
2.5V Ref Internal Bias
V ref Vcc
12V
8.5V
Disable 160s Timer
Drive Output
7 OUT 13V
ZCD 5
6.7V 1.4V 1.5V Zero Current Detector
S Q R OVP 2.66V 2.55V
CS 4
40k 8pF 0.8V
Ramp Signal
Disable OCP Comparator
0.45V 0.35V
V CC =8.5V Reference Set V CC =4.5V Reference Reset
1V Offset
MOT 3
Sawtooth Generator
Error Amplifier
Gm
Dual-Output Reference Generator 1.5V/2.5V 1 INV
1V ~ 5V Range
6
2
GND
COMP
FAN7528 Rev. 1.00
Figure 2. Functional Block Diagram of FAN7528
(c) 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 2
www.fairchildsemi.com
FAN7528 Dual-Output, Critical Conduction Mode PFC Controller
Pin Assignments
VCC 8 OUT 7 GND 6 ZCD 5
WWW FAN7528
1 INV 2 COMP 3 MOT 4 CS
FAN7528 Rev. 1.00
Figure 3. Pin Configuration (Top View)
Pin Definitions
Pin #
1
Name
INV
Description
This pin is the inverting input of the error amplifier. The output voltage of the boost PFC converter should be resistively divided to 2.5V at the high line condition and connected to this pin. If this pin voltage is controlled to be lower than 0.45V, the device is disabled. This pin is the output of the transconductance error amplifier. Some components for the output voltage compensation should be connected between this pin and GND. This pin is used to set the slope of the internal ramp. The voltage of this pin is maintained to be 1V. If a resistor is connected between this pin and GND, current flows out of the pin and the slope of the internal ramp is proportional to this current. This pin is the input of the over-current protection comparator. The MOSFET current is sensed using a sensing resistor and the resulting voltage is applied to this pin. An internal RC filter is included to filter switching noise. This pin is sensitive to the negative voltage below -0.3V. For proper operation, the stray inductance in the sensing path and the inductance of the sensing resistor must be minimized. This pin is the input of the zero current detection block. If the voltage of this pin goes higher than 1.5V, then lower than 1.4V, the MOSFET is turned on. This pin is used for the ground potential of all the pins. For proper operation, the signal ground and the power ground should be separated. This pin is the gate drive output. The peak sourcing and sinking current level is 400mA. For proper operation, the stray inductance in the gate driving path must be minimized. This pin is the IC supply pin. IC current and MOSFET drive current are supplied using this pin.
2 3
COMP MOT
4
CS
5 6 7 8
ZCD GND OUT VCC
(c) 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 3
www.fairchildsemi.com
FAN7528 Dual-Output, Critical Conduction Mode PFC Controller
Absolute Maximum Ratings
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. TA = 25C unless otherwise specified.
Symbol
VCC IOH, IOL Iclamp Idet VIN TJ TA TSTG ESD Supply Voltage
Parameter
Peak Drive Output Current Driver Output Clamping Diodes VO > VCC or VO < -0.3V Detector Clamping Diodes Error Amp, MOT, CS Input Voltages Operating Junction Temperature Operating Temperature Range Storage Temperature Range Human Body Model Machine Model
Value
23 400 10 10 -0.3 to 6 150 -40 to 125 -65 to 150 2.0 300
Unit
V mA mA mA V C C C kV V
Thermal Impedance
Symbol
JA
Parameter
Thermal Resistance, Junction-to-Ambient 8-DIP 8-SOP
Value
110 150
Unit
C/W C/W
Note: 1. Regarding the test environment and PCB type, please refer to JESD51-2 and JESD51-10.
(c) 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 4
www.fairchildsemi.com
FAN7528 Dual-Output, Critical Conduction Mode PFC Controller
Electrical Characteristics
VCC = 14V, TA = -40C~125C, unless otherwise specified.
Symbol
VTH(start) VTH(stop) HY(uvlo) IST ICC IDCC ICC(dis)
Parameter
Start Threshold Voltage Stop Threshold Voltage UVLO Hysteresis Start-up Supply Current Operating Supply Current Dynamic Operating Supply Current Operating Current at Disable
Condition
VCC increasing VCC decreasing
Min.
11 8.0 3.0
Typ.
12 8.5 3.5 40 1.5 2.5
Max.
13 9.0 4.0 70 3.0 4.0 90 2.535 2.565 1.55 10.0 0.5
Unit
V V V A mA mA A V V V mV mV A A A
Under-Voltage Lockout Section
Supply Current Section VCC = VTH(start) - 0.2V Output no switching 50kHz, CL=1nF Vinv = 0V TA = 25C 40 2.465 2.435 1.45 VCC = 14V~23V Vref1(1) Vinv = 1V~4V Vinv = 2.4V Vinv = 2.6V 4.5 0.7 90 TA = 25C 1.24 3.0 Rmot = 13.7k Rmot = 13.7k, TA = 25C 0.95 18.0 Threshold(1) -0.5 -12 12 5.5 1.0 115 1.30 4.5 1.00 22.5 6.5 1.3 140 1.36 6.0 1.05 27.0
65 2.500 2.500 1.50 0.1 20
Error Amplifier Section Vref1 Vref2 Vref1 Vref3 Ib(ea) Isource Isink Veao(H) Veao(Z) gm VTH(in) VTH(reset) Vmot tON-max Voltage Feedback Input Threshold1 Voltage Feedback Input Threshold2 Line Regulation Temperature Stability of Input Bias Current Output Source Current Output Sink Current Output Upper Clamp Voltage Zero Duty Cycle Output Voltage Transconductance(1) Output Voltage Selection Threshold Output Voltage Reset
V V mho V V V s
Maximum On-Time Section Maximum On-time Voltage Maximum On-time Programming Current Sense Input Threshold Voltage Limit Input Bias Current Current Sense Delay to Output
(1)
Current Sense Section VCS(limit) Ib(cs) td(cs) 0.7 VCS = 0V~1V -1.0 0.8 -0.1 350 0.9 1.0 500 V A ns
(c) 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 5
www.fairchildsemi.com
FAN7528 Dual-Output, Critical Conduction Mode PFC Controller
Electrical Characteristics (Continued)
VCC = 14V, TA = -40C~125C, unless otherwise specified.
Symbol
VTH(ZCD) HY(ZCD) Vclamp(h) Vclamp(l) Ib(ZCD) Isource(zcd) Isink(zcd) tdead
Parameter
Input Voltage Threshold(1) Detect Hysteresis
(1)
Condition
Min.
1.35 0.05
Typ.
1.50 0.10 6.7 0.6 -0.1
Max.
1.65 0.15 7.4 1.0 1.0 -10 10
Unit
V V V V A mA mA ns
Zero Current Detection Section
Input High Clamp Voltage Input Low Clamp Voltage Input Bias Current Source Current Capability Sink Current Capability(1) Maximum Delay from ZCD to Output Turn-on(1) Output Voltage High Output Voltage Low Rising Falling Time(1) Time(1)
(1)
Idet = 3mA Idet = -3mA VZCD = 1V~5V
6.0 0 -1.0
100
200
Output Section VOH VOL tr tf VO(max) VO(uvlo) td(rst) VOVP HY(ovp) VTH(en) HY(en) IO = -100mA IO = 100mA CL = 1nF CL = 1nF VCC = 20V, IO = 100A VCC = 5V, IO = 100A 40 TA = 25C 2.60 0.06 0.40 0.05 160 2.66 0.11 0.45 0.10 11.5 9.2 11.0 1.0 50 50 13.0 12.8 2.5 100 100 14.5 1 360 2.72 0.16 0.50 0.15 V V ns ns V V s V V V V
Maximum Output Voltage Output Voltage with UVLO Activated Restart Timer Delay OVP Threshold Voltage OVP Hysteresis Enable Threshold Voltage Enable Hysteresis
Restart Timer Section Over-Voltage Protection Section
Enable Section
Note: 1. These parameters, although guaranteed by design, are not tested in production.
(c) 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 6
www.fairchildsemi.com
FAN7528 Dual-Output, Critical Conduction Mode PFC Controller
Typical Performance Characteristics
12.8 12.4
9.2 8.8 8.4 8.0 7.6
VTH(start) [V]
12.0 11.6 11.2 -60 -40 -20 0 20 40 60 80 100 120 140
VTH(stop) [V]
-60 -40 -20
0
20 40 60 80 100 120 140
Temperature [C]
Temperature [C]
Figure 4. Start Threshold Voltage vs. Temp.
Figure 5. Stop Threshold Voltage vs. Temp.
4.0 3.8
70 60 50
HY(uvlo) [V]
IST [A]
3.6 3.4 3.2 3.0 -60 -40 -20 0 20 40 60 80 100 120 140
40 30 20 10 0 -60 -40 -20 0 20 40 60 80 100 120 140
Temperature [C]
Temperature [C]
Figure 6. UVLO Hysteresis vs. Temp.
Figure 7. Start-up Supply Current vs. Temp.
3.0 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 0 20 40 60 80 100 120 140
4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 0 20 40 60 80 100 120 140
Temperature [C]
IDCC [mA]
ICC [mA]
Temperature [C]
Figure 8. Operating Supply Current vs. Temp.
Figure 9. Dynamic Operating Current vs. Temp.
(c) 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 7
www.fairchildsemi.com
FAN7528 Dual-Output, Critical Conduction Mode PFC Controller
Typical Performance Characteristics (Continued)
90 80
2.56 2.54 2.52
ICC(dis) [A]
60 50 40 -60 -40 -20 0 20 40 60 80 100 120 140
Vref1 [V]
70
2.50 2.48 2.46 2.44 -60 -40 -20 0 20 40 60 80 100 120 140
Temperature [C]
Temperature [C]
Figure 10. ICC at Disable vs. Temp.
Figure 11. Vref1 vs. Temp.
1.54 1.52
0.4 0.2
Ib(ea) [A]
Vref2 [V]
1.50 1.48 1.46 -60 -40 -20 0 20 40 60 80 100 120 140
0.0 -0.2 -0.4 -60 -40 -20 0 20 40 60 80 100 120 140
Temperature [C]
Temperature [C]
Figure 12. Vref2 vs. Temp.
Figure 13. Input Bias Current vs. Temp.
-6 -9
18 15
Isource [A]
Isink [A]
-12 -15 -18 -60 -40 -20 0 20 40 60 80 100 120 140
12 9 6 -60 -40 -20 0 20 40 60 80 100 120 140
Temperature [C]
Temperature [C]
Figure 14. Error Amp. Source Current vs. Temp.
Figure 15. Error Amp. Sink Current vs. Temp.
(c) 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 8
www.fairchildsemi.com
FAN7528 Dual-Output, Critical Conduction Mode PFC Controller
Typical Performance Characteristics (Continued)
6.5 6.0
1.3 1.2 1.1
Veao(H) [V]
5.5 5.0 4.5 -60 -40 -20 0 20 40 60 80 100 120 140
Veao(Z) [V]
1.0 0.9 0.8 0.7 -60 -40 -20 0 20 40 60 80 100 120 140
Temperature [C]
Temperature [C]
Figure 16. Error Amp. Clamp Voltage vs. Temp.
Figure 17. Zero Duty Output Voltage vs. Temp.
1.36 1.34 1.32 1.04 1.02
VTH(IN) [V]
1.30 1.28 1.26 1.24 -60 -40 -20 0 20 40 60 80 100 120 140
Vmot [V]
1.00 0.98 0.96 -60 -40 -20 0 20 40 60 80 100 120 140
Temperature [C]
Temperature [C]
Figure 18. Output Select Threshold vs. Temp.
Figure 19. MOT Pin Voltage vs. Temp.
26 24
0.88 0.84
tON(max) [s]
VCS(limit) [V]
-60 -40 -20 0 20 40 60 80 100 120 140
22 20 18
0.80 0.76 0.72 -60 -40 -20 0 20 40 60 80 100 120 140
Temperature [C]
Temperature [C]
Figure 20. Maximum On-Time vs. Temp.
Figure 21. Current Limit vs. Temp.
(c) 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 9
www.fairchildsemi.com
FAN7528 Dual-Output, Critical Conduction Mode PFC Controller
Typical Performance Characteristics (Continued)
0.9 0.6
7.4 7.2 7.0
Vclamp(H) [V]
-60 -40 -20 0 20 40 60 80 100 120 140
0.3
Ib(CS) [A]
0.0 -0.3 -0.6 -0.9
6.8 6.6 6.4 6.2 6.0 -60 -40 -20 0 20 40 60 80 100 120 140
Temperature [C]
Temperature [C]
Figure 22. CS Input Bias Current vs. Temp.
Figure 23. ZCD Input High Clamp vs. Temp.
1.0 0.8 0.8 0.4
Vclamp(L) [V]
Ib(ZCD) [A]
-60 -40 -20 0 20 40 60 80 100 120 140
0.6 0.4 0.2
0.0 -0.4 -0.8
0.0 -60 -40 -20 0 20 40 60 80 100 120 140
Temperature [C]
Temperature [C]
Figure 24. ZCD Input Low Clamp vs. Temp.
Figure 25. ZCD Input Bias Current vs. Temp.
12.5 12.0 11.5
2.5 2.0 1.5
VOH [V]
11.0 10.5 10.0 9.5
VOL [V]
-60 -40 -20 0 20 40 60 80 100 120 140
1.0 0.5 0.0 -60 -40 -20 0 20 40 60 80 100 120 140
Temperature [C]
Temperature [C]
Figure 26. Output Voltage High vs. Temp.
Figure 27. Output Voltage Low vs. Temp.
(c) 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 10
www.fairchildsemi.com
FAN7528 Dual-Output, Critical Conduction Mode PFC Controller
Typical Performance Characteristics (Continued)
14.5 14.0 13.5
1.0 0.8
VO(max) [V]
13.0 12.5 12.0 11.5 -60 -40 -20 0 20 40 60 80 100 120 140
VO(uvlo) [V]
0.6 0.4 0.2 0.0 -60 -40 -20 0 20 40 60 80 100 120 140
Temperature [C]
Temperature [C]
Figure 28. Maximum Output Voltage vs. Temp.
Figure 29. Output Voltage when UVLO vs. Temp.
400 350 300
2.74 2.72 2.70
td(rst) [s]
200 150 100 50 -60 -40 -20 0 20 40 60 80 100 120 140
VOVP [V]
250
2.68 2.66 2.64 2.62 2.60 -60 -40 -20 0 20 40 60 80 100 120 140
Temperature [C]
Temperature [C]
Figure 30. Restart Timer Delay vs. Temp.
Figure 31. Over-Voltage Protection vs. Temp.
0.14 0.12
0.50 0.48
HY(OVP) [V]
0.10 0.08 0.06 -60 -40 -20 0 20 40 60 80 100 120 140
VTH(en) [V]
0.46 0.44 0.42 0.40 -60 -40 -20 0 20 40 60 80 100 120 140
Temperature [C]
Temperature [C]
Figure 32. OVP Hysteresis vs. Temp.
Figure 33. Enable Threshold Voltage vs. Temp.
(c) 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 11
www.fairchildsemi.com
FAN7528 Dual-Output, Critical Conduction Mode PFC Controller
Typical Performance Characteristics (Continued)
0.14 0.12
HY(en) [V]
0.10 0.08 0.06 -60 -40 -20 0 20 40 60 80 100 120 140
Temperature [C]
Figure 34. Enable Hysteresis vs. Temp.
(c) 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 12
www.fairchildsemi.com
FAN7528 Dual-Output, Critical Conduction Mode PFC Controller
Applications Information
1. Error Amplifier Block
The error amplifier block has several functions, such as dual output function, over-voltage protection function, and disable function.
1.2 Over-Voltage Protection Function
The control speed of the PFC converter is very slow; therefore, the over-voltage protection (OVP) of the output voltage is very important. The FAN7528 provides a precise OVP function that shuts down the drive circuit when the INV pin voltage exceeds 2.66V and there is 0.11V hysteresis.
1.1 Dual-Output Function
Unlike conventional CRM PFC controllers, the FAN7528 has the dual-output control function according to the AC line voltage without sensing the rectified AC line voltage. Because the output voltage of the boost converter is proportional to the peak voltage of the input AC line voltage before the boost converter starts switching, the INV pin voltage represents the peak AC line voltage. When the AC line is connected to the boost converter, VCC voltage starts to increase from zero voltage. If the VCC voltage reaches 8.5V, the dual-output reference generator compares the INV pin voltage with 1.3V reference and, if the INV pin voltage is lower than 1.3V, the dual-output reference generator sets the reference voltage of the error amplifier to 1.5V. If the INV pin voltage is higher than 1.3V, the reference voltage is set to 2.5V. That means if the output voltage of the boost converter is set to 400V at high line, the output voltage is 240V (400V*1.5/2.5) at low line. If the output voltage is set to 390V at high line, the output voltage is 234V at low line. Because this block does not need the input voltage sensing network, the power loss and cost related with the sensing network can be saved. The reference voltage of the error amplifier is not reset until VCC goes below 4.5V.
2.66V OVP 2.55V
1.3 Disable Function
If the INV pin voltage is lower than 0.45V, most of the internal block is disabled, the operating current is reduced to be 65A, and there is 0.1V hysteresis in the comparator.
1.4 Error Amplifier
The error amplifier is a transconductance type amplifier. The output current of the amplifier is proportional to the voltage difference between the inverting input and the non-inverting input of the amplifier. Some resistors and capacitors should be connected to the error amplifier output pin, the COMP pin, for the output voltage loop compensation.
2. Zero Current Detection Block
The zero current detector (ZCD) generates the turn-on signal of the MOSFET when the boost inductor current reaches zero using an auxiliary winding coupled with the inductor. If the voltage of the ZCD pin goes higher than 1.5V, the ZCD comparator waits until the voltage goes below 1.4V. If the voltage goes below 1.4V, the zero current detector turns on the MOSFET. The ZCD pin is protected internally by two clamps, 6.7V high clamp and 0.6V low clamp. The 160s timer generates a MOSFET turn-on signal if the drive output has been low for more than 160s from the falling edge of the drive output.
Disable
0.45V
0.35V
Dual-Output Reference Generator Error Amp
Gm
VOUT
VIN ZCD RZCD 5 6.7V 1.4V 1.5V Zero Current Detector R FAN7528 Rev. 1.00 S Q 160s Timer Turn-on Signal
1.5V/2.5V 1
INV
2
COMP
Figure 36. Zero Current Detector Block
FAN7528 Rev. 1.00
Figure 35. Error Amplifier Block
(c) 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 13
www.fairchildsemi.com
FAN7528 Dual-Output, Critical Conduction Mode PFC Controller
3. Sawtooth Generator Block
The output of the error amplifier and the output of the sawtooth generator are compared to determine the MOSFET turn-off instance. The slope of the sawtooth is determined by an external resistor connected to the MOT pin. The voltage of the MOT pin is 1V and the slope is proportional to the current flowing out of the MOT pin. The internal ramp signal has 1V offset; therefore, the drive output is shut down if the voltage of the COMP pin is lower than 1V. The MOSFET on-time is maximum when the COMP pin voltage is 5V. According to the slope of the internal ramp, the maximum on-time can be programmed. The necessary maximum on-time depends on the boost inductor, lowest AC line voltage, and maximum output power. The resistor value should be designed properly.
Off Signal MOT 3 1V Sawtooth Generator 1V
4. Over-Current Protection Block
The MOSFET current is sensed using an external sensing resistor for the over-current protection. If the CS pin voltage is higher than 0.8V, the over-current protection comparator generates a protection signal. An internal RC filter is included to filter switching noise.
40k CS 4 8pF 0.8V Over-Current Protection Comparator
FAN7528 Rev. 1.00
OCP Signal
Figure 38. Over-Current Protection Block
5. Switch Drive Block
The FAN7528 contains a single totem-pole output stage designed for a direct drive of power MOSFET. The drive output is capable of up to 400mA peak current with a typical rise and fall time of 50ns with 1nF load. The output voltage is clamped to be 13V to protect MOSFET gate even if the VCC voltage is higher than 13V.
Error Amp Output
FAN7528 Rev. 1.00
Figure 37. Sawtooth Generator Block
6. Under-Voltage Lockout Block
If the VCC voltage reaches 12V, the IC's internal blocks are enabled and start operation. If the VCC voltage drops below 8.5V, most of the internal blocks are disabled to reduce the operating current. VCC voltage should be higher than 8.5V under normal conditions.
(c) 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 14
www.fairchildsemi.com
FAN7528 Dual-Output, Critical Conduction Mode PFC Controller
Typical Application Circuit
Application
Adapter
Output power
100W
Input voltage
Universal input (90~264 Vac)
Output voltage
389V/232V
Features
High efficiency (>90% at 90 Vac input) Low THD (total harmonic distortion) (<10% at 264 Vac input) Dual-output control
Key Design Notes
Diode D4 is used to prevent IC malfunction that can happen if the CS pin voltage is lower than -0.3V. Important components for low THD are R2, R5, and C11.
1. Schematic
T1 VAUX BD C5 R3 R4 C10 NTC ZD1 D1 C3 C2 LF1 C1 R2 C4 8 7 C11 6 5 R5 D3 Q1 R6 C9 R10 D2 PFC OUTPUT
OUT
GND
ZCD
VCC
R9
FAN7528
COMP
INV
MOT
CS
R11
1 V1 F1 C6 R8 C8
2
3
4 R7 D4
C7
R1
AC INPUT
FAN7528 Rev. 1.00
Figure 39. Schematic
(c) 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 15
www.fairchildsemi.com
FAN7528 Dual-Output, Critical Conduction Mode PFC Controller
2. Inductor Schematic Diagram
1 NVcc 2 3 Np 5
FAN7528 Rev. 1.00
Figure 40. Inductor Schematic Diagram
3. Winding Specification No
Np NVcc
Pin (sf)
53 21
Wire
0.2 x 10
Turns
44 6
Winding Method
Solenoid Winding Solenoid Winding
Insulation: Polyester Tape t = 0.050mm, 4 Layers 0.2 x 1 Outer Insulation: Polyester Tape t = 0.050mm, 4 Layers Air Gap: 0.6mm for each leg
4. Electrical Characteristics Pin
Inductance 3-5
Specification
400H 10%
Remarks
100kHz, 1V
5. Core & Bobbin
Core: EI 3026 Bobbin: EI3026 Ae(mm2): 111
(c) 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 16
www.fairchildsemi.com
FAN7528 Dual-Output, Critical Conduction Mode PFC Controller
6. Demo Circuit Part List Part
F1 NTC R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11
Value
Fuse 3A/250V NTC 10D-9 Resistor 10k 370k 330k 150 20k 10 0.22 10k 10k 2M 12.9k Capacitor 150nF/275VAC 330nF/275VAC 2.2nF/3kV 2.2nF/3kV 150nF/630V 47uF/25V 47nF/50V 220nF 100F/450V 12nF/100V 47pF/50V
Note
Part
T1
Value
Inductor 400H MOSFET
Note
EI3026
Q1 1/4W 1/4W 1/2W 1/2W 1/4W 1/4W 1/2W 1/4W 1/4W 1/4W 1/4W BD D1 D2 D3 D4 ZD1
FQPF13N50C Diode 1N4148 BYV26C 1N5819 1N5819 1N4746 Bridge Diode KBL06 Line Filter
Fairchild
Fairchild 600V, 1A Fairchild Fairchild 18V
600V/4A
Box Capacitor Box Capacitor Ceramic Capacitor Ceramic Capacitor Film Capacitor Electrolytic Capacitor Ceramic Capacitor MLCC Electrolytic Capacitor Film Capacitor Ceramic Capacitor
LF1
40mH IC
Wire 0.4mm
IC1
FAN7528 TNR
Fairchild
V1
471
470V
(c) 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 17
www.fairchildsemi.com
FAN7528 Dual-Output, Critical Conduction Mode PFC Controller
7. Layout
Power Ground
Separate the power ground and the signal ground
Signal Ground
Place the output voltage sensing resistors close to IC
Figure 41. PCB Layout Considerations for FAN7528
8. Performance Data 90 Vac
100W 50W PF THD PF THD 0.999 3.5% 0.997 5.1%
110 Vac
0.998 3.6% 0.996 5.5%
220 Vac
0.991 6.1% 0.971 11.1%
264 Vac
0.983 7.3% 0.947 13.0%
(c) 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 18
www.fairchildsemi.com
FAN7528 Dual-Output, Critical Conduction Mode PFC Controller
Mechanical Dimensions
8-DIP
Dimensions are in millimeters unless otherwise noted.
Figure 42. 8-Lead Dual In-Line Package (DIP)
(c) 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 19
www.fairchildsemi.com
FAN7528 Dual-Output, Critical Conduction Mode PFC Controller
Mechanical Dimensions
8-SOP
Dimensions are in millimeters unless otherwise noted.
Figure 43. 8-Lead Small Outline Package (SOP)
(c) 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 20
www.fairchildsemi.com
FAN7528 Dual-Output, Critical Conduction Mode PFC Controller
(c) 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 21
www.fairchildsemi.com


▲Up To Search▲   

 
Price & Availability of FAN752807

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X